
Modern Compiler
Implementation
in C

Basic Techniques

ANDREW W. APPEL
Princeton University

with MAIA GINSBURG

Preliminary edition ofModern Compiler Implementation in C

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, United Kingdom
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

c© Andrew W. Appel and Maia Ginsburg, 1997

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1997

Printed in the United States of America

Typeset in Times, Courier, and Optima

Library of Congress Cataloguing-in-Publication data applied for

A catalog record for this book is available from the British Library

0-521-58275-X Modern Compiler Implementation in ML: Basic Techniques (hardback)
0-521-58775-1 Modern Compiler Implementation in ML: Basic Techniques (paperback)
0-521-58387-X Modern Compiler Implementation in Java: Basic Techniques (hardback)
0-521-58654-2 Modern Compiler Implementation in Java: Basic Techniques (paperback)
0-521-58389-6 Modern Compiler Implementation in C: Basic Techniques (hardback)
0-521-58653-4 Modern Compiler Implementation in C: Basic Techniques (paperback)

Contents

Preface ix

Part I Fundamentals of Compilation

1 Introduction 3
1.1 Modules and interfaces 4
1.2 Tools and software 5
1.3 Data structures for tree languages 7

2 Lexical Analysis 16
2.1 Lexical tokens 17
2.2 Regular expressions 18
2.3 Finite automata 21
2.4 Nondeterministic finite automata 24
2.5 Lex: a lexical analyzer generator 31

3 Parsing 39
3.1 Context-free grammars 41
3.2 Predictive parsing 46
3.3 LR parsing 56
3.4 Using parser generators 67

4 Abstract Syntax 80
4.1 Semantic actions 80
4.2 Abstract parse trees 84

5 Semantic Analysis 94
5.1 Symbol tables 94
5.2 Bindings for the Tiger compiler 103
5.3 Type-checking expressions 106

v

CONTENTS

5.4 Type-checking declarations 109

6 Activation Records 116
6.1 Stack frames 118
6.2 Frames in the Tiger compiler 126

7 Translation to Intermediate Code 140
7.1 Intermediate representation trees 141
7.2 Translation into trees 144
7.3 Declarations 160

8 Basic Blocks and Traces 166
8.1 Canonical trees 167
8.2 Taming conditional branches 175

9 Instruction Selection 180
9.1 Algorithms for instruction selection 183
9.2 CISC machines 192
9.3 Instruction selection for the Tiger compiler 194

10 Liveness Analysis 206
10.1 Solution of dataflow equations 208
10.2 Liveness in the Tiger compiler 216

11 Register Allocation 222
11.1 Coloring by simplification 223
11.2 Coalescing 226
11.3 Graph coloring implementation 231
11.4 Register allocation for trees 240

12 Putting It All Together 248

Part II Advanced Topics

13 Garbage Collection 257
13.1 Mark-and-sweep collection 257
13.2 Reference counts 262
13.3 Copying collection 264
13.4 Generational collection 269

vi

CONTENTS

13.5 Incremental collection 271
13.6 Baker’s algorithm 274
13.7 Interface to the compiler 275

14 Object-oriented Languages 283
14.1 Classes 283
14.2 Single inheritance of data fields 286
14.3 Multiple inheritance 288
14.4 Testing class membership 290
14.5 Private fields and methods 293
14.6 Classless languages 294
14.7 Optimizing object-oriented programs 295

15 Functional Programming Languages 299
15.1 A simple functional language 300
15.2 Closures 302
15.3 Immutable variables 303
15.4 Inline expansion 309
15.5 Closure conversion 315
15.6 Efficient tail recursion 318
15.7 Lazy evaluation 320

16 Dataflow Analysis 333
16.1 Intermediate representation for flow analysis 334
16.2 Various dataflow analyses 337
16.3 Transformations using dataflow analysis 341
16.4 Speeding up dataflow analysis 343
16.5 Alias analysis 351

17 Loop Optimizations 359
17.1 Dominators 362
17.2 Loop-invariant computations 365
17.3 Induction variables 369
17.4 Array bounds checks 374
17.5 Loop unrolling 378

Appendix: Tiger Language Reference Manual 381
A.1 Lexical issues 381
A.2 Declarations 381

vii

CONTENTS

A.3 Variables and expressions 384
A.4 Standard library 388

Bibliography 389

Index 393

viii

Preface

Over the past decade, there have been several shifts in the way compilers are
built. New kinds of programming languages are being used: object-oriented
languages with dynamic methods, functional languages with nested scope and
first-class function closures; and many of these languages require garbage
collection. New machines have large register sets and a high penalty for
memory access, and can often run much faster with compiler assistance in
scheduling instructions and managing instructions and data for cache locality.

This book is intended as a textbook for a one-semester or two-quarter course
in compilers. Students will see the theory behind different components of a
compiler, the programming techniques used to put the theory into practice,
and the interfaces used to modularize the compiler. To make the interfaces
and programming examples clear and concrete, I have written them in the C
programming language. Other editions of this book are available that use the
Java and ML languages.

The “student project compiler” that I have outlined is reasonably simple,
but is organized to demonstrate some important techniques that are now in
common use: Abstract syntax trees to avoid tangling syntax and semantics,
separation of instruction selection from register allocation, sophisticated copy
propagation to allow greater flexibility to earlier phases of the compiler, and
careful containment of target-machine dependencies to one module.

This book,Modern Compiler Implementation in C: Basic Techniques,is
the preliminary edition of a more complete book to be published in 1998,
entitledModern Compiler Implementation in C. That book will have a more
comprehensive set of exercises in each chapter, a “further reading” discussion
at the end of every chapter, and another dozen chapters on advanced material
not in this edition, such as parser error recovery, code-generator generators,
byte-code interpreters, static single-assignment form, instruction scheduling

ix

PREFACE

and software pipelining, parallelization techniques, and cache-locality opti-
mizations such as prefetching, blocking, instruction-cache layout, and branch
prediction.

Exercises.Each of the chapters in Part I has a programming exercise corre-
sponding to one module of a compiler. Unlike many “student project com-
pilers” found in textbooks, this one has a simple but sophisticated back end,
allowing good register allocation to be done after instruction selection. Soft-
ware useful for the programming exercises can be found at

http://www.cs.princeton.edu/˜appel/modern/

There are also pencil and paper exercises in each chapter; those marked with a
star * are a bit more challenging, two-star problems are difficult but solvable,
and the occasional three-star exercises are not known to have a solution.

Acknowledgments. Several people have provided constructive criticism, course-
tested the manuscript, or helped in other ways in the production of this book.
I would like to thank Stephen Bailey, David Hanson, Elma Lee Noah, Todd
Proebsting, Barbara Ryder, Amr Sabry, Zhong Shao, Mary Lou Soffa, Andrew
Tolmach, and Kwangkeun Yi.

x

PART ONE

Fundamentals of
Compilation

1
Introduction

A compiler was originally a program that “compiled”
subroutines [a link-loader]. When in 1954 the combina-
tion “algebraic compiler” came into use, or rather into
misuse, the meaning of the term had already shifted into
the present one.

Bauer and Eickel [1975]

This book describes techniques, data structures, and algorithms for translating
programming languages into executable code. A modern compiler is often
organized into many phases, each operating on a different abstract “language.”
The chapters of this book follow the organization of a compiler, each covering
a successive phase.

To illustrate the issues in compiling real programming languages, I show
how to compile Tiger, a simple but nontrivial language of the Algol family,
with nested scope and heap-allocated records. Programming exercises in each
chapter call for the implementation of the corresponding phase; a student
who implements all the phases described in Part I of the book will have a
working compiler. Tiger is easily modified to befunctionalor object-oriented
(or both), and exercises in Part II show how to do this. Other chapters in Part
II cover advanced techniques in program optimization. Appendix A describes
the Tiger language.

The interfaces between modules of the compiler are almost as important as
the algorithms inside the modules. To describe the interfaces concretely, it is
useful to write them down in a real programming language. This book uses
the C programming language.

3

CHAPTER ONE. INTRODUCTION

S
o

u
rc

e
 P

ro
g

ra
m

T
o

ke
n

s

R
e

d
u

ct
io

n
s

A
b

st
ra

ct
 S

yn
ta

x

T
ra

n
sl

a
te

Tables

Frame

IR
 T

re
e

s

IR
 T

re
e

s

A
ss

e
m

A
ss

e
m

F
lo

w
 G

ra
p

h

In
te

rf
e

re
n

ce
 G

ra
p

h

R
e

g
is

te
r

A
ss

ig
n

m
e

n
t

A
ss

e
m

b
ly

 L
a

n
g

u
a

g
e

R
e

lo
ca

ta
b

le
 O

b
je

ct
 C

o
d

e

M
a

ch
in

e
 L

a
n

g
u

a
g

e

Parsing
ActionsParseLex Semantic

Analysis Translate Canon-
icalize

Frame
Layout

Environ-
ments

Instruction
Selection

Control
Flow

Analysis

Data
Flow

Analysis

Register
Allocation

Code
Emission

Assembler Linker

FIGURE 1.1. Phases of a compiler, and interfaces between them.

1.1 MODULES AND INTERFACES

Any large software system is much easier to understand and implement if
the designer takes care with the fundamental abstractions and interfaces.
Figure 1.1 shows the phases in a typical compiler. Each phase is implemented
as one or more software modules.

Breaking the compiler into this many pieces allows for reuse of the com-
ponents. For example, to change the target-machine for which the compiler
produces machine language, it suffices to replace just the Frame Layout and In-
struction Selection modules. To change the source language being compiled,
only the modules up through Translate need to be changed. The compiler
can be attached to a language-oriented syntax editor at theAbstract Syntax
interface.

The learning experience of coming to the right abstraction by several itera-
tions ofthink–implement–redesignis one that should not be missed. However,
the student trying to finish a compiler project in one semester does not have

4

1.2. TOOLS AND SOFTWARE

this luxury. Therefore, I present in this book the outline of a project where the
abstractions and interfaces are carefully thought out, and are as elegant and
general as I am able to make them.

Some of the interfaces, such asAbstract Syntax, IR Trees,andAssem,take
the form of data structures: for example, the Parsing Actions phase builds an
Abstract Syntaxdata structure and passes it to the Semantic Analysis phase.
Other interfaces are abstract data types; theTranslate interface is a set of
functions that the Semantic Analysis phase can call, and theTokensinterface
takes the form of a function that the Parser calls to get the next token of the
input program.

DESCRIPTION OF THE PHASES
Each chapter of Part I of this book describes one compiler phase, as shown in
Table 1.2

This modularization is typical of many real compilers. But some com-
pilers combine Parse, Semantic Analysis, Translate, and Canonicalize into
one phase; others put Instruction Selection much later than I have done, and
combine it with Code Emission. Simple compilers omit the Control Flow
Analysis, Data Flow Analysis, and Register Allocation phases.

I have designed the compiler in this book to be as simple as possible, but
no simpler. In particular, in those places where corners are cut to simplify the
implementation, the structure of the compiler allows for the addition of more
optimization or fancier semantics without violence to the existing interfaces.

1.2 TOOLS AND SOFTWARE

Two of the most useful abstractions used in modern compilers arecontext-free
grammars, for parsing, andregular expressions, for lexical analysis. To make
best use of these abstractions it is helpful to have special tools, such asYacc
(which converts a grammar into a parsing program) andLex(which converts
a declarative specification into a lexical analysis program).

The programming projects in this book can be compiled using any ANSI-
standard C compiler, along withLex (or the more modernFlex) and Yacc
(or the more modernBison). Some of these tools are freely available on the
Internet; for information see the Wide-World Web page

http://www.cs.princeton.edu/˜appel/modern/

5

CHAPTER ONE. INTRODUCTION

Chapter Phase Description
2 Lex Break the source file into individual words, ortokens.
3 Parse Analyze the phrase structure of the program.
4 Semantic

Actions
Build a piece ofabstract syntax treecorresponding to each phrase.

5 Semantic
Analysis

Determine what each phrase means, relate uses of variables to
their definitions, check types of expressions, request translation
of each phrase.

6 Frame
Layout

Place variables, function-parameters, etc. into activation records
(stack frames) in a machine-dependent way.

7 Translate Produceintermediate representation trees(IR trees), a notation
that is not tied to any particular source language or target-machine
architecture.

8 Canonicalize Hoist side effects out of expressions, and clean up conditional
branches, for the convenience of the next phases.

9 Instruction
Selection

Group the IR-tree nodes into clumps that correspond to the actions
of target-machine instructions.

10 Control
Flow
Analysis

Analyze the sequence of instructions into acontrol flow graph
that shows all the possible flows of control the program might
follow when it executes.

10 Dataflow
Analysis

Gather information about the flow of information through vari-
ables of the program; for example,liveness analysiscalculates
the places where each program variable holds a still-needed value
(is live).

11 Register
Allocation

Choose a register to hold each of the variables and temporary
values used by the program; variables not live at the same time
can share the same register.

12 Code
Emission

Replace the temporary names in each machine instruction with
machine registers.

TABLE 1.2. Description of compiler phases.

Source code for some modules of the Tiger compiler, support code for some
of the programming exercises, example Tiger programs, and other useful files
are also available from the same Web address.

Skeleton source code for the programming assignments is available from
this Web page; the programming exercises in this book refer to this directory as
$TIGER/ when referring to specific subdirectories and files contained therein.

6

1.3. DATA STRUCTURES FOR TREE LANGUAGES

Stm → Stm ; Stm (CompoundStm)
Stm → id := Exp (AssignStm)
Stm → print (ExpList) (PrintStm)
Exp → id (IdExp)
Exp → num (NumExp)
Exp → Exp Binop Exp (OpExp)
Exp → (Stm , Exp) (EseqExp)

ExpList → Exp , ExpList (PairExpList)
ExpList → Exp (LastExpList)
Binop → + (Plus)
Binop → − (Minus)
Binop → × (Times)
Binop → / (Div)

GRAMMAR 1.3. A straight-line programming language.

1.3 DATA STRUCTURES FOR TREE LANGUAGES

Many of the important data structures used in a compiler areintermediate
representationsof the program being compiled. Often these representations
take the form of trees, with several node types, each of which has different
attributes. Such trees can occur at many of the phase-interfaces shown in
Figure 1.1.

Tree representations can be described with grammars, just like program-
ming languages. To introduce the concepts, I will show a simple programming
language with statements and expressions, but no loops or if-statements (this
is called a language ofstraight-line programs).

The syntax for this language is given in Grammar 1.3.
The informal semantics of the language is as follows. EachStmis a state-

ment, eachExp is an expression.s1; s2 executes statements1, then statement
s2. i:= e evaluates the expressione, then “stores” the result in variablei.
print (e1, e2, . . . , en) displays the values of all the expressions, evaluated
left to right, separated by spaces, terminated by a newline.

An identifier expression, such asi, yields the current contents of the variable
i. A numberevaluates to the named integer. Anoperator expressione1 op e2

evaluatese1, thene2, then applies the given binary operator. And anexpression
sequences, e behaves like the C-language “comma” operator, evaluating the
statements for side effects before evaluating (and returning the result of) the
expressione.

For example, executing this program

a := 5+3; b := (print(a, a-1), 10*a); print(b)

prints

7

CHAPTER ONE. INTRODUCTION

.
CompoundStm

AssignStm

a OpExp

NumExp

5

Plus NumExp

3

CompoundStm

AssignStm

b EseqExp

PrintStm

PairExpList

IdExp

a

LastExpList

OpExp

IdExp

a

Minus NumExp

1

OpExp

NumExp

10

Times IdExp

a

PrintStm

LastExpList

IdExp

b

a := 5 + 3 ; b := (print (a , a - 1) , 10 * a) ; print (b)

FIGURE 1.4. Tree representation of a straight-line program.

8 7
80

How should this program be represented inside a compiler? One represen-
tation issource code, the characters that the programmer writes. But that is
not so easy to manipulate. More convenient is a tree data structure, with one
node for each statement (Stm) and expression (Exp). Figure 1.4 shows a tree
representation of the program; the nodes are labeled by the production labels
of Grammar 1.3, and each node has as many children as the corresponding
grammar production has right-hand-side symbols.

We can translate the grammar directly into data structure definitions, as
shown in Figure 1.5. Each grammar symbol corresponds to a typedef in the
data structures:

8

1.3. DATA STRUCTURES FOR TREE LANGUAGES

Grammar typedef
Stm A stm
Exp A exp
ExpList A expList
id string
num int

For each grammar rule, there is oneconstructorthat belongs to theunion

for its left-hand-side symbol. The constructor names are indicated on the
right-hand side of Grammar 1.3.

Each grammar rule has right-hand-side components that must be repre-
sented in the data structures. The CompoundStm has two Stm’s on the right-
hand side; the AssignStm has an identifier and an expression; and so on. Each
grammar symbol’sstruct contains aunion to carry these values, and a
kind field to indicate which variant of the union is valid.

For each variant (CompoundStm, AssignStm, etc.) we make aconstructor
function to malloc and initialize the data structure. In Figure 1.5 only the
prototypes of these functions are given; the definition ofA_CompoundStm
would look like this:

A_stm A_CompoundStm(A_stm stm1, A_stm stm2) {
A_stm s = malloc(sizeof(*s));
s->stm1=stm1; s->stm2=stm2;
return s;

}

For Binop we do something simpler. Although we could make a Binop
struct – with union variants for Plus, Minus, Times, Div – this is overkill
because none of the variants would carry any data. Instead we make anenum

typeA_binop .

Programming style. We will follow several conventions for representing tree
data structures in C:

1. Trees are described by a grammar.
2. A tree is described by one or moretypedef s, corresponding to a symbol in

the grammar.
3. Eachtypedef defines a pointer to a correspondingstruct . Thestruct

name, which ends in an underscore, is never used anywhere except in the
declaration of thetypedef .

4. Eachstruct contains akind field, which is anenum showing different
variants, one for each grammar rule; and au field, which is a union.

9

CHAPTER ONE. INTRODUCTION

typedef char *string;
typedef struct A_stm_ *A_stm;
typedef struct A_exp_ *A_exp;
typedef struct A_expList_ *A_expList;

struct A_stm_ {enum {A_compoundStm, A_assignStm, A_printStm} kind;
union {struct {A_stm stm1, stm2;} compound;

struct {string id; A_exp exp;} assign;
struct {A_expList exps;} print;

} u;
};

A_stm A_CompoundStm(A_stm stm1, A_stm stm2);
A_stm A_AssignStm(String id, A_exp exp);
A_stm A_PrintStm(A_expList exps);

struct A_exp_ {enum {A_idExp, A_numExp, A_opExp, A_eseqExp} kind;
union {String id;

int num;
struct {A_exp left; A_binop oper; A_exp right;} op;
struct {A_stm stm; A_exp exp;} eseq;

} u;
};

A_exp A_IdExp(String id);
A_exp A_NumExp(int num);
A_exp A_OpExp(A_exp left, A_binop oper, A_exp right);
A_exp A_EseqExp(A_stm stm, A_exp exp);

typdef enum {A_plus,A_minus,A_times,A_div} A_binop;

struct A_expList_ {enum {A_pairExpList, A_lastExpList} kind;
union {struct {A_exp head; A_expList tail;} pair;

A_exp last;
} u;

}

PROGRAM 1.5. Representation of straight-line programs.

5. If there is more than one nontrivial (value-carrying) symbol in the right-
hand side of a rule (example: the rule CompoundStm), theunion will have
a component that is itself a struct comprising these values (example: the
compound element of theA_stm_ union).

6. If there is only one nontrivial symbol in the right-hand side of a rule, the
union will have a component that is the value (example: thenumfield of the
A_exp union).

7. Every class will have a constructor function that initializes all the fields. The
malloc function shall never be called directly, except in these constructor

10

1.3. DATA STRUCTURES FOR TREE LANGUAGES

functions.
8. Each module (header file) shall have a prefix unique to that module (example,

A_ in Figure 1.5).
9. Typedef names (after the prefix) shall start with lower-case letters; constructor

functions (after the prefix) with uppercase; enumeration atoms (after the prefix)
with lowercase; and union variants (which have no prefix) with lowercase.

Modularity principles for C programs. A compiler can be a big program;
careful attention to modules and interfaces prevents chaos. We will use these
principles in writing a compiler in C:

1. Each phase or module of the compiler belongs in its own “.c” file, which will
have a corresponding “.h” file.

2. Each module shall have a prefix unique to that module. All global names
(structure and union fields are not global names) exported by the module shall
start with the prefix. Then the human reader of a file will not have to look
outside that file to determine where a name comes from.

3. All functions shall have prototypes, and the C compiler shall be told to warn
about uses of functions without prototypes.

4. We will #include "util.h" in each file:

/* util.h */
#include <assert.h>

typedef char *string;
string String(char *);

typedef char bool;
#define TRUE 1
#define FALSE 0

void *checked_malloc(int);

The inclusion ofassert.h encourages the liberal use of assertions by the C
programmer.

5. Thestring type means a heap-allocated string that will not be modified after
its initial creation. TheString function builds a heap-allocatedstring from
a C-style character pointer (just like the standard C library functionstrdup).
Functions that takestring s as arguments assume that the contents will never
change.

6. C’s malloc function returnsNULL if there is no memory left. The Tiger
compiler will not have sophisticated memory management to deal with this
problem. Instead, it will never callmalloc directly, but call only our own
function,checked_malloc , which guarantees never to returnNULL:

11

CHAPTER ONE. INTRODUCTION

void *checked_malloc(int len) {
void *p = malloc(len);
assert(p);
return p;

}

7. We will never callfree . Of course, a production-quality compiler must free
its unused data in order to avoid wasting memory. The best way to do this
is to use an automatic garbage collector, as described in Chapter 13 (see
particularlyconservative collectionon page 280). Without a garbage collector,
the programmer must carefullyfree(p) when the structurep is about to
become inaccessible – not too late, or the pointerp will be lost, but not too
soon, or else still-useful data may be freed (and then overwritten). In order
to be able to concentrate more on compiling techniques than on memory
deallocation techniques, we can simply neglect to do anyfree ing.

P R O G R A M STRAIGHT-LINE PROGRAM INTERPRETER
Implement a simple program analyzer and interpreter for the straight-line

programming language. This exercise serves as an introduction toenviron-
ments(symbol tables mapping variable-names to information about the vari-
ables); toabstract syntax(data structures representing the phrase structure
of programs); torecursion over tree data structures, useful in many parts
of a compiler; and to afunctional styleof programming without assignment
statements.

It also serves as a “warm-up” exercise in C programming. Programmers
experienced in other languages but new to C should be able to do this exercise,
but will need supplementary material (such as textbooks) on C.

Programs to be interpreted are already parsed into abstract syntax, as de-
scribed by the data types in Program 1.5.

However, we do not wish to worry about parsing the language, so we write
this program by applying data constructors:

A_stm prog =
A_CompoundStm(A_AssignStm("a",

A_OpExp(A_NumExp(5), A_plus, A_NumExp(3))),
A_CompoundStm(A_AssignStm("b",

A_EseqExp(A_PrintStm(A_PairExpList(A_IdExp("a"),
A_LastExpList(A_OpExp(A_IdExp("a"), A_minus,

A_NumExp(1))))),
A_OpExp(A_NumExp(10), A_times, A_IdExp("a")))),

A_PrintStm(A_LastExpList(A_IdExp("b")))));

12

PROGRAMMING EXERCISE

Files with the data type declarations for the trees, and this sample program,
are available in the directory$TIGER/chap1 .

Writing interpreters without side effects (that is, assignment statements that
update variables and data structures) is a good introduction todenotational
semanticsandattribute grammars, which are methods for describing what
programming languages do. It’s often a useful technique in writing compilers,
too; compilers are also in the business of saying what programming languages
do.

Therefore, in implementing these programs, never assign a new value to
any variable or structure-field except when it is initialized. For local variables,
use the initializing form of declaration (for example,int i=j+3;) and for
each kind ofstruct , make a “constructor” function that allocates it and
initializes all the fields, similar to theA_CompoundStm example on page 9.

1. Write a functionint maxargs(A_stm) that tells the maximum number
of arguments of anyprint statement within any subexpression of a given
statement. For example,maxargs(prog) is 2.

2. Write a functionvoid interp(A_stm) that “interprets” a program in this
language. To write in a “functional programming” style – in which you never
use an assignment statement – initialize each local variable as you declare it.

For part 1, remember that print statements can contain expressions that
contain other print statements.

For part 2, make two mutually recursive functionsinterpStm andinterp -
Exp. Represent a “table,” mapping identifiers to the integer values assigned
to them, as a list ofid × int pairs.

typedef struct table *Table_;
Table_ {string id; int value; Table_ tail};
Table_ Table(string id, int value, struct table *tail) {

Table_ t = malloc(sizeof(*t));
t->id=id; t->value=value; t->tail=tail;
return t;

}

TheninterpStm is declared as

Table_ interpStm(A_stm s, Table_ t)

taking a tablet1 as argument and producing the new tablet2 that’s just like
t1 except that some identifiers map to different integers as a result of the
statement.

13

CHAPTER ONE. INTRODUCTION

For example, the tablet1 that mapsa to 3 and mapsc to 4, which we write
{a 7→ 3, c 7→ 4} in mathematical notation, could be represented as the linked
list a 3 c 4 .

Now, let the tablet2 be just liket1, except that it mapsc to 7 instead of 4.
Mathematically, we could write,

t2 = update(t1, c, 7)

where the update function returns a new table{a 7→ 3, c 7→ 7}.
On the computer, we could implementt2 by putting a new cell at the head of

the linked list: a 3 c 4c 7 as long as we assume that
thefirst occurrence ofc in the list takes precedence over any later occurrence.

Therefore, theupdate function is easy to implement; and the correspond-
ing lookup function

int lookup(Table_ t, string key)

just searches down the linked list.
Interpreting expressions is more complicated than interpreting statements,

because expressions return integer valuesand have side effects. We wish
to simulate the straight-line programming language’s assignment statements
without doing any side effects in the interpreter itself. (Theprint statements
will be accomplished by interpreter side effects, however.) The solution is to
declareinterpExp as

struct IntAndTable {int i; Table_ t;};
struct IntAndTable interpExp(A_exp e, Table_ t) · · ·

The result of interpreting an expressione1 with tablet1 is an integer valuei
and a new tablet2. When interpreting an expression with two subexpressions
(such as anOpExp), the tablet2 resulting from the first subexpression can be
used in processing the second subexpression.

E X E R C I S E S

1.1 This simple program implements persistent functional binary search trees, so
that if tree2=insert(x,tree1) , then tree1 is still available for lookups
even while tree2 can be used.

14

EXERCISES

typedef struct tree *T_tree;
struct tree {T_tree left; String key; T_tree right;};
T_tree Tree(T_tree l, String k, T_tree r) {

T_tree t = checked_malloc(sizeof(*t));
t->left=l; t->key=k; T->right=r;
return t;

}

T_tree insert(String key, T_tree t) {
if (t==NULL) return Tree(NULL, key, NULL)
else if (key < t->key)

return Tree(insert(key,t->left),t->key,t->right);
else if (key > t.key)

return Tree(t->left,t->key,insert(key,t->right));
else return Tree(t->left,key,t->right);

}

a. Implement a member function that returns true if the item is found, else
false .

b. Extend the program to include not just membership, but the mapping of
keys to bindings:

T_tree insert(String key, void *binding, T_tree t);
void * lookup(String key, T_tree t);

c. These trees are not balanced; demonstrate the behavior on the following
two sequences of insertions:
(a) t s p i p f b s t
(b) a b c d e f g h i

*d. Research balanced search trees in Sedgewick [1988] and recommend
a balanced-tree data structure for functional symbol tables. (Hint: to
preserve a functional style, the algorithm should be one that rebalances
on insertion but not on lookup.)

15

